Parasitic drag, also known as profile drag,
It is named as such because it is not useful, in contrast with lift-induced drag which is created when an airfoil generates lift. All objects experience parasitic drag, regardless of whether they generate lift. Parasitic drag comprises all types of drag except lift-induced drag, and the total drag on an aircraft or other object which generates lift is the sum of parasitic drag and lift-induced drag.
Form drag depends on the longitudinal section of the body. A prudent choice of body profile is essential for a low drag coefficient. Streamlines should be continuous, and Flow separation with its attendant vortex should be avoided.
Form drag includes interference drag, caused by the mixing of airflow streams. For example, where the wing and fuselage meet at the wing root, two airstreams merge into one. This mixing can cause eddy currents, turbulence, or restrict smooth airflow. Interference drag is greater when two surfaces meet at perpendicular angles, and can be minimised by the use of Aircraft fairing.
Wave drag, also known as supersonic wave drag or compressibility drag, is a component of form drag caused by generated when an aircraft is moving at transonic and supersonic speeds.
Form drag is a type of pressure drag, a term which also includes lift-induced drag. Form drag is pressure drag due to separation.
Skin friction is caused by viscosity in the boundary layer around the object. The boundary layer at the front of the object is usually laminar and relatively thin, but becomes turbulent and thicker towards the rear. The position of the transition point from laminar to turbulent flow depends on the shape of the object. There are two ways to decrease friction drag: the first is to shape the moving body so that laminar flow is possible. The second method is to increase the length and decrease the cross-section of the moving object as much as practicable. To do so, a designer can consider the fineness ratio, which is the length of the aircraft divided by its diameter at the widest point (L/D). It is mostly kept 6:1 for subsonic flows. Increase in length increases Reynolds number (). With in the denominator for skin friction coefficient's relation, as its value is increased (in laminar range), total friction drag is reduced. While decrease in cross-sectional area decreases drag force on the body as the disturbance in air flow is less.
The skin friction coefficient, , is defined by
For a laminar flow over a plate, the skin friction coefficient can be determined using the formula:
|
|